Noncommutative Deformations of Sheaves and Presheaves of Modules

نویسنده

  • EIVIND ERIKSEN
چکیده

We work over an algebraically closed field k, and consider the noncommutative deformation functor DefF of a finite family F of presheaves of modules defined over a presheaf of k-algebras A on a small category c. We develop an obstruction theory for DefF , with certain global Hochschild cohomology groups as the natural cohomology. In particular, we show how to calculate the prorepresenting hull H(DefF ) in concrete terms. When (X,A) is a ringed space over k, we also consider the noncommutative deformation functor DefF of a finite family F of quasi-coherent sheaves of left A-modules on X. We give conditions for this deformation functor to be isomorphic to the corresponding deformation functor of presheaves on U, where U is some open cover of X considered as a small category, and show that these conditions are satisfied in many interesting examples. In these cases, it follows that we can calculate the pro-representing hull H(DefF ) in concrete terms using presheaf techniques. Finally, we show that n-fold extensions in the category of quasi-coherent sheaves can be calculated using global Hochschild cohomology in many cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Noncommutative Deformations of Presheaves and Sheaves of Modules

We describe a noncommutative deformation theory for presheaves and sheaves of modules that generalizes the commutative deformation theory of these global algebraic structures, and the noncommutative deformation theory of modules over algebras due to Laudal. In the first part of the paper, we describe a noncommutative deformation functor for presheaves of modules on a small category, and an obst...

متن کامل

Computing Noncommutative Global Deformations of D-modules

Let (X,D) be a D-scheme in the sense of Beilinson and Bernstein, given by an algebraic variety X and a morphism OX → D of sheaves of rings on X. We consider noncommutative deformations of quasi-coherent sheaves of left D-modules on X, and show how to compute their pro-representing hulls. As an application, we compute the noncommutative deformations of the left DX -module OX when X is any ellipt...

متن کامل

Gerstenhaber-batalin-vilkoviski Structures on Coisotropic Intersections

Let Y, Z be a pair of smooth coisotropic subvarieties in a smooth algebraic Poisson variety X. We show that any data of first order deformation of the structure sheaf OX to a sheaf of noncommutative algebras and of the sheaves OY and OZ to sheaves of right and left modules over the deformed algebra, respectively, gives rise to a Batalin-Vilkoviski algebra structure on the Tor-sheaf TorX q (OY ,...

متن کامل

Gerstenhaber-batalin-vilkoviski Structures on Coisotropic Intersections

Let Y, Z be a pair of smooth coisotropic subvarieties in a smooth algebraic Poisson variety X. We show that any data of first order deformation of the structure sheaf OX to a sheaf of noncommutative algebras and of the sheaves OY and OZ to sheaves of right and left modules over the deformed algebra, respectively, gives rise to a Batalin-Vilkoviski algebra structure on the Tor-sheaf TorX q (OY ,...

متن کامل

Noncommutative Gorenstein Projective Schemes and Gorenstein-injective Sheaves

We prove that if a positively-graded ring R is Gorenstein and the associated torsion functor has finite cohomological dimension, then the corresponding noncommutative projective scheme Tails(R) is a Gorenstein category in the sense of [10]. Moreover, under this condition, a (right) recollement relating Gorensteininjective sheaves in Tails(R) and (graded) Gorenstein-injective R-modules is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005